

Model-based Design and Control of Dynamic Legged Robots

Hae-Won Park

Assistant Professor Dynamic Robot Control and Design Lab.

Humanoid Robot Research Center

Department of Mechanical Engineering

DRCD Lab: Dynamic Robot Control and Design Laboratory

Research on Design, Control, State Estimation of Legged Robot Systems

Actuator Design

Quasi Direct Drive Design [IROS'17] (IROS Best Student Paper Finalist)

Hydraulic Power Unit Design [RA-L'21]

ΚΔΙ

Department of Mechanical Engineering

Quadrupedal Robots

Representation-free MPC [T-RO'21] ('20 TC Best Paper Finalist)

Nonlinear MPC on SO(3) [IROS'20] (IROS Best RoboCup Paper)

Humanoid Robots

Learning-based Force Control [RA-L'21]

Hydraulic Humanoid [RA-L'21]

Research Work in the DRCD Lab

Collaboration with Other Labs

Great Examples of Legged Systems in Biology

Athletic Mobility in Complex Environments

"Super squirrel" from National Geographic

Department of Mechanical Engineering

Stability with Body Coordination Rock Climbing without Hands (gfycat.com)

Dynamic Balance while Fast Leg Kicking Kazotsky Kick of Ukrainian Dance Company (youtube.com)

Three Virtues of a Great Legged Robot System

Control Algorithms

- Exploit diverse model structures
- Responsive to the environment
- Ability to control a variety of maneuvers
- Real-time computation

Actuator Design

- High torque and high speed
- Transparent transmission
- Fast response to the commanded torque
- Low inertia and friction

Model-based optimization

Conventional Control Design for Legged Robots

ROBOTICS 2021 SCIENCE AND SYSTEMS

Using Trajectory Library [T-RO'12, ICRA'12, IJRR'11],

- Trajectories for various types of obstacles are generated by offline optimization (hybrid zero dynamics)
- A heuristic design of finite-state-machine is introduced to manage switching between trajectories

Modifying Pre-Obtained Trajectory [IJRR'17, ICRA'15, IROS'14]

- Periodic trajectory for a simplified model obtained from off-line optimization
- Online modification of trajectories using impulse-planning for different speeds.

Duty Cycle = 0.377

Duty Cycle = 0.233

 $\int_0^1 (F_z^* - mg)dt = 0$

Momentum Balance

KAIST Department of Mechanical Engineering

amazon

ΤΟΥΟΤΑ

RESEARCH INSTITUTE

Online Optimization for Jumps over Obstacles [RSS'15, RAS'21]

Online Jump TO <100 msec

Heuristic Output (Task) Choices in Control Design

Complex 3D Dynamic Motions

Model Predictive Control for Legged Robots

Torque Control Actuator Design [IROS'17, Best Student Paper Finalist]

- Choose a right combination of gear ratio and motor choice
- Integrated approach for physical and control system design using nonlinear program

amazon

ΤΟΥΟΤΑ

RESEARCH INSTITUTE

Mechanical Engineering

Torque Control Actuator Design [IROS'17, Best Student Paper Finalist]

- Choose a right combination of gear ratio and motor choice
- Integrated approach for physical and control system design using nonlinear program

Nonlinear Optimization Problem

Torque Control Actuator Design [IROS'17, Best Student Paper Finalist]

- Select a <u>gear ratio</u> (and motor specs) to ٠
 - Maximize dynamic maneuvering capability (jumping height)
 - Consider impact force when landing
 - While respecting motor speed and torque limitations

Mechanical Engineering

Hardware Integration

Leg module specifications:

- Composed of 3 motor modules
- Total mass: 0.89 kg
- Link length l = 0.14 m
- Total link weight 0.06 kg (<10%)

Compound Planetary Gear

Department of Mechanical Engineering

Linear Representation-free MPC on SO(3)

[ICRA'19, T-RO'21(TC Best Paper Finalist)]

Large angular excursion

Department of Mechanical Engineering

From Youtube, Alex & Jumpy - The Parkour Dog

Linear Model Predictive Control on SO(3)

[ICRA'19, T-RO'21(TC Best Paper Finalist)]

Constraints:

KAIST

Sparse KKT Matrix

Sparse QP Solver for MPC [RA-L'19]

- Caching the Cholesky factor pattern

- \cdot Factorizing only rows that changes
- \rightarrow Avoid redundant computation

Model Predictive Control Experiments

KAIST Department of Mechanical Engineering

Backflipping Experiments

- 180° backflipping controlled with RF-MPC.
- Controlled trajectory passes through the singular position of Euler angles.

KAIST Department of Mechanical Engineering

Backflipping Experiments

- 180° backflipping controlled with RF-MPC.
- Controlled trajectory passes through the singular position of Euler angles.

KAIST Departme Mechanic

Department of Mechanical Engineering

Nonlinear Representation-free MPC on SO(3) [IROS'20, Best RoboCup Paper]

- Formulate MPC problem into optimization on SO(3) manifold
- The exponential map is selected as the retraction on a manifold.

Nonlinear Representation-free MPC on SO(3) [IROS'20, Best RoboCup Paper]

Experimental Results

- Push Disturbance
- Slope (40%)
- 2.9 m/sec Flying Trot

KAIST Department of Mechanical Engineering

Experimental Results

amazon Toyota RESEARCH INSTITUTE

One Controller for Multiple Gaits

Gait Pattern and Motion from Motion Planner

- Motions from TOWR [Winkler et al., RA-L'18]
- Tracking with our NMPC
- Simulation in RAISIM [Hwangbo et al., RA-L'19]

KAIST Department of Mechanical Engineering

One Controller across Multiple Hardware Platforms

With slight change of cost functions, the RF-NMPC was able to control many robots with different size scales and different actuation schemes

Electric Actuator

Hydraulic Actuator

Small

Defying Gravity: Locomotion on Ferromagnetic Surface

• With the change of GRF constraints, the NMPC is able to control vertical wall climbing locomotion (singular pose!)

Summary

- Model predictive control could be a good controller candidate for legged robots.
 - \rightarrow Handle high-degrees of freedom model and constraints
 - \rightarrow Exploit diverse model structures and control inputs
 - \rightarrow Control a variety of robots, motions and gaits
 - \rightarrow Sparse QP solver renders real-time computation and implementation of MPC.
- Linear and nonlinear MPC can be formulated in a representation-free manner which is free from issues of Euler angles and quaternions

 \rightarrow Open possibilities for controlling extreme dynamic 3D motions

• Torque control actuator design enables effective implementations of MPC on legged robots.

Sung-Woo Kim

Chuanzheng

Cho

Yong Um

Abhishek

Pandala

Jaejun Park

Minkyu Kim

Seungwoo Hong

Young-Ha Shin

Kim

Kijeong Kim

- Sangbae Kim (MIT)
- Patrick Wensing (U. of Notre Dame)

- Jun-ho Oh (Rainbow Robotics)
- Yong-Lae Park (SNU)
- Jemin Hwangbo (KAIST ME)
- Kook-jin Yoon (KAIST ME)
- Hyun Myung (KAIST EE)
- Sung-Eui Yoon (KAIST CS)

Ministry of Trade, Agency for Industry and Energy **Defense Development**

Buyoun