

KTH ROYAL INSTITUTE OF TECHNOLOGY

Formal methods for robot planning

Why formal methods?

Rigorous techniques for

specification

How do we tell robots what to do?

development, verification, analysis of systems

How do we ensure that they behave as expected?

Why temporal logics and formal synthesis?

Temporal logics

- rich
- rigorous
- resemblance to natural language

Formal synthesis

How do we tell robots what to do?

How do we ensure that they behave as expected?

Temporal logic for mission and motion objectives

• Keep patrolling the three offices.

 $GF(A) \wedge GF(B) \wedge GF(C)$

• Whenever you spot danger, go directly to the staircase and wait for "all clear" signal before continuing.

amazon

 $G(danger \Rightarrow X(staircase \ U \ all_clear))$

• Make sure to recharge at least every 10 minutes.

 $GF_{[0,10]}$ recharge

• At all times, stay within 5 meters from the wi-fi router.

 $G(Dist(robot, router) \le 5)$

ΤΟΥΟΤΑ

Why temporal logics and formal synthesis?

Temporal logics

- rich
- rigorous
- resemblance to natural language

Formal synthesis

• correct-by-design plan

How do we tell robots what to do?

How do we ensure that they behave as expected?

Formal synthesis (2009)

Formal synthesis (2013)

Formal synthesis (today)

Formal synthesis, integrated

Multi-robot coordination for dynamic production assistance

Three challenges of formal synthesis

amazon

TOYOTA

RESEARCH INSTITUTE

1. The no-plan challenge

1. The no-plan challenge

The traffic rules are violated only for the absolutely necessary, for the necessary time

Quantitative evaluation of LTL

Assume a transition system from RRT* or other abstraction

Level of violation $\lambda(trace, LTL formula)$: the time duration associated with the discrete transitions that need to be removed to make the trace satisfy the LTL formula, weighted by the penalty

[Tumova et al HSCC 2013]

Minimum-violation automata-based FS

amazon

ΤΟΥΟΤΑ

RESEARCH INSTITUTE

٠

٠

MV-RRT*

- RRT*
- weighted tree
- Incrementally update shortest path
- Optimality criterion distance

Incrementally build

- MV-RRT*
- weighted product automaton
 - minimally violating path
 - primarily level of violation, then distance

MV-RRT* in autonomous driving

Multi-vehicle settings:

[Reyes-Castro et al HSCC 2013, Vasile et al ICRA 2017, Karlsson et al ICRA 2018, CASE 2020, ICRA 2021]

Jana Tumova, tumova@kth.se

The no plan challenge under uncertainty

The severity of violation, the probability of violation, and the level of uncertainty are taken into account

Risk-aware planning in autonomous driving

- Safety specification: G(h(x(t)) > 0)
- Severity function: $\ell_h(x) = \begin{cases} \ell(h(x(t))), h(x(t)) > 0 \\ 0, \text{ otherwise} \end{cases}$

 $G(\Delta(v_e, v_l) - (p_l - p_e) > 0)$

- Severity of violation: $L = l_h(\hat{x})$
- Risk: E[L]
- Risk-aware planning ٠

[Nyberg et al IV 2021]

Signal Temporal Logic spatial robustness

 $G(1 - dist(\sigma, M) > 0)$

See [Donze and Maler, LNCS, 2013]

STL as a preference specification

STL-guided autonomous exploration

 $\mathsf{AEP} + \mathsf{STL}\,G(dist(\sigma, M) - 1 > 0)$

Fernando S. Barbosa, Daniel Duberg, Patric Jensfelt and Jana Tumova

2. The no-good-model challenge

amazon

ΤΟΥΟΤΑ

RESEARCH INSTITUTE

Safe multi-step feedback motion primitives for non-holonomic system with bounded disturbance

- Divide the input space into regions & linearize
- Linearization introduces error

- The error can be corrected in *k* steps
- · The motion primitives can be chained and refined

[Tajvar et al ISSR 2019, CASE 2020, IROS 2021]

LTL planning with motion primitives

Towards safe data-driven contact-rich manipulation

[Mitsioni et al Humanoids 2021]

Jana Tumova, tumova@kth.se

The interactiver active non-allenge

Correct-by-design and socially acceptable plan

Correct-by-design and socially acceptable plan

I wish I had time to talk also about

- Provable safety vs. perceived safety
- Assumption-guarantee synthesis

Decentralized multi-agent coordination with temporal logic specifications

Take-aways

- Temporal logics and formal synthesis to address
 - How do we tell robots what to do?
 - How do we ensure that they behave as expected?
- Rigorous, but not rigid:
 - Can be used to provide guarantees if that is desired and possible
 - No need to freeze if a correct-by-design plan does not exist
 - Support for preferences, not just mission/safety-critical goals

The future: Moving forward to the wild

- Well-defined
 —> "Soft" objectives
 mathematical objectives
- Guarantees
 → Risk-awareness
- Manually created models —> Data-driven models and specifications and specifications
- FS or learning —> FS and learning RL with TL goals, RL with TL constraints,

 Component-view —> System-view

Thanks!

Pouria Tajvar, Truls Nyberg, Fernando Barbosa, Wei Wang, Albin Larsson Forsberg, Georg Schuppe, Alexis Linard, Christian Pek, Jesper Karlsson Swedish Research Council

Horizon2020 European Union Funding for Research & Innovation

Swedish Foundation for Strategic Research

VINNOVA Sweden's Innovation Agency

digital futures

